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STABILITY OF SYMMETRICAL COMPRESSION OF A CYLINDRICAL 

LINER MODELING A SYSTEM OF WIRES 

A. A. Samokhin UDC 533.952 

Low-inductance multiwire devices ("arrays") [i], used as the load in pin-diodes, have 
made it possible to obtain plasmas characterized by high velocities (-107 cm/sec) and extreme 
parameters. This had in turn made such plasmas a promising tool in studies of powerful 
sources of electromagnetic radiation and dense-plasma generators [2]. The multiwire devices 
are also of interest for modeling the dynamics of the compression of cylindrical liners and 
z-pinches. The study of instabilities which disturb the synchronicity of the convergence of 
conductors at the center of the system is an important goal [3]. Here, we analyze the stabil- 
ity of the symmetrical collapse of an "array" with allowance for the mutual inductive effect 
of the currents and the finite ohmic resistance of the conductors. By using an asymptotic 
solution, the results are extended to the case of a solid liner. 

Formulation of the Problem. We will examine a system of N rectilinear conductors (wires) 
with current. The conductors are positioned between two plane electrodes and close a circuit 
with the voltage source E, external inductance Lext, and external resistance ~ext. It is 
assumed that the wires remain parallel to the z axis during motion and have transverse 
dimensions much smaller than the characteristic spacing. In this case, the motion of the 
liner reduces to the motion of point masses in the plane (x, y). We will use a Lagrangian 
formulation of the problem [4] to obtain the corresponding equations of motion with allowance 
for the changing inductance of the system. Each conductor is described by three generalized 
coordinates. Two of these coordinates (x, y) describe the position of the conductor, while 
the third coordinate Q gives the magnitude of the transmitted charge and corresponds to an 
"electrical" degree of freedom. The Lagrangian of the system, comprised of the kinetic 
energy of the wires, the energy of the magnetic field, and the energy of the external source, 
has the form 

L ~  = 21c -2 in (Boo / lX~  - -  X~I ) ,  cz =/= ~, 

L ~  = 2lc  -2 In (Ro~/r~),  
(2) 
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Here, X= = (X=, y=); M=, r= are the mass and radius of the conductor, 2 is the length of the 
liner; R~ is the radius of the reverse conductor. If the reverse conductor is made in the 
form of a cylinder coaxial with the linear, then allowance for the inductive properties in 
the chosen form (2) is an idealization which does not consider that the portion of the conduc- 
tors does not coincide with the center of the system. However, such an approximation is 
valid if the radius R~ is much greater than the radius of the linear R. In the case when the 
reverse conductor is made in a form similar to an array, i.e. consists of several massive 
conductors, then the validity of the approximation of an "effective" R~ needs to be inves- 
tigated. This question is not addressed here. With allowance for the resistance ~ext and the 
resistance of the conductors ~, we write the corresponding Lagrange equations as follows 

M~Xs = Is ~ I OLs~ fl~X~; (3) 

d Z (Ls~ + Lext) I~ = E - -  Z ~spI~, Qs~ = ~ext (~ =/= ~), ~ =  = Qext + ms. (4) dt 

Here ,  I a = Qa and  t h e  e x t e r n a l  v o l t a g e  a r e  e q u a l  t o  z e r o ,  t h e n  (4)  i s  e q u i v a l e n t  t o  t h e  
c o n d i t i o n  o f  t r a p p i n g  o f  t h e  m a g n e t i c  f i e l d  and  c o n s e r v a t i o n  o f  t h e  g e n e r a l i z e d  i m p u l s e  A z (A 
i s  t h e  v e c t o r - p o t e n t i a l  o f  t h e  m a g n e t i c  f i e l d ) .  

To a c h i e v e  a h i g h  d e g r e e  o f  c o m p r e s s i o n  o f  t h e  l i n e a r  a t  t h e  i n i t i a l  moment,  t h e  conduc-  
t o r s  a r e  l o c a t e d  a t  t h e  v e r t i c e s  o f  a r e g u l a r  p o l y g o n  and i t  i s  a s sumed  t h a t  t h i s  symmet ry  i s  
m a i n t a i n e d  d u r i n g  t h e  p r o c e s s  o f  m o t i o n .  The s t a b i l i t y  o f  t h e  s y m m e t r i c a l  c o m p r e s s i o n  o f  a 
m u l t i w i r e  l i n e a r  was s t u d i e d  i n  [ 3 ] .  H e r e ,  t h e  a u t h o r s  i g n o r e d  c u r r e n t  f l u c t u a t i o n s  ( 5 I  a = 
0) o r ,  e q u i v a l e n t l y ,  e m p l o y e d  a r e g i m e  i n  wh ich  t h e  c u r r e n t  was d e s c r i b e d .  W i t h i n  t h e  f r a m e -  
work o f  t h e  model  f o r m u l a t e d  a b o v e ,  t h i s  a p p r o x i m a t i o n  c o r r e s p o n d s  t o  t h e  c a s e  o f  l a r g e  ohmic 
r e s i s t a n c e ,  when t h e  l e f t  s i d e  o f  Eq. (4) can  be  i g n o r e d  and  we c a n  d e t e r m i n e  t h e  c u r r e n t s  
f rom t h e  e q u a l i t y  o f  t h e  v o l t a g e  o f  t h e  l o a d  t o  t h e  ohmic r e s i s t a n c e  on t h e  c o n d u c t o r :  I s =  

E--~ext~Ip ~s. If the resistances of the conductors are the same, then the nonsymmetrical 

perturbations of the current are identically equal to zero. The goal of the present study is 
to investigate the stability of symmetrical compression of a multiwire linear with allowance 
for the inductive voltage drop on the conductors. 

Stability of Compression of a Multiwire Liner. We will represent the initial symmetrical 
solution of the problem of the compression of a multiwire liner in the form X s = O~X, X = 
Re, I= =I, where 0 is a transformation of rotation through the angle 2~/N; e = (I, 0) is the 
unit vector. We subject this solution to a perturbation: 6Xs = (ipO)=6X, 6Is =~61, ~p = exp- 
(i2~p/N)~ p = O, i ..... N--I. After linearization of Eqs. (3) and (4), if we ignore fluctua- 
tions of the transverse dimensions and resistances of the conductors we obtain 

[ i 
d 2 21I 2 21I _1 - -  

Mc2R2 P iBv J ( 5 ) 

K Z  l - - ~ v ~ _ ,  ~x + 
d t n  - - i B p  J 

(6) 
+ + + X6o  + z 6 •  + . %no o 6z. 
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TABLE I 

p N 

4 5 6 7 8 9 

2 0,71 i,O0 t,22 1,4t 1,58 1,73 
0,96 t,~1 t,20 t,27 1,32 

3 -- -- t,41 1,73 2,0 2,24 
-- 1,71 1,91 2,07 

4 . . . .  

Note: 

2,12 2,45 
2,43 

The top and bottom numbers correspond to R/r = ~ and I0. 

Here, 60p is the Kronecker symbol; the constants Ap, 
ities 

N--I 
Ap = ~ ~ cos (2~/N) - -  cos (2np[J/N) 

l~=l "2 ( - ~  c~ss (2u[3/N)) ' 

N - - I  N--I 

Bp, and Cp are determined by the equal- 

a~;) sin (2~p~/N) ) Bp X COS2 ( -  -- /2~p 0.5 
= = c o ~  ~-7~- 

(7) 

The expressions presented above for Ap and Bp can be simplified. It is easy to establish the 

recursion formulas Ap+ I = Ap + B v + 0.5(N60p--i), Bp+ 1 = Bp--i @ 0.5(60p + 8px-1)- From 
here, taking into account the equalities A I = 0, B 0 = 0, we find 

Ap = 0 . 5 @  - -  l ) ( N  - -  p - -  1 ) ,  B ;  - -  0 . 5 N  - -  p~  ( 8 )  

where p takes values of I, 2 .... , N - I. We will henceforth limit ourselves to examination 
of the harmonics which disturb the symmetric of the liner, i.e. p # O. Here, the parameters 
of the external radius of the circuit - inductance Lext, resistance ~ext, and the radius of 
the reverse conductor R~ - are omitted from Eq. (6). 

We will examine the case of an ideally conducting liner (~ = 0). For convenience, we 
introduce the notation Gv = Cv ~ In (R/r). Using Eq. (6), we express the current perturbation 
61 through 6X 

and, having inserted this into (5), we obtain 

2 ,  o 
dtZ + - -  2 16X=O" (i0) Mc2B ~ - -A~J + G;1 _ iB1B p Bp J J ;  

To solve this equation, we ignore the change in Gp during compression of the liner and we put 

I n  t h e  q u a s i c l a s s i c a l  a p p r o x i m a t i o n ,  7 i s  d e t e r m i n e d  as  t h e  r o o t  o f  t h e  d i s p e r s i o n  r e l a t i o n  

( 21f21 I/2 G~? 4+(B[+B~)}~-Ap(G~+2)=O, V = ~ \ ~ }  . (12) 

Considering (8), we have 

( V / [ -2(~ - I)(N-- P-~ I~-- I) ~z (P--1)Z+(N--P--I)  z -4- l-[-Gp(Gp+ 2) L(p----j~f~_-~--p_l)z ] . 
= 4Gp -- 

(13) 
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It follows from Eq. (9) that the prescribed-current regime examined in [3] is realized in the 
limit Gp = ~. Large values of Gp are attained as a result of an increase in the ratio R/r, 
when the mutual inductive effect of the conductors approaches zero. In this case, the tangen- 
tial deformations are unstable, with an increment equal to 

- V- 
?~ = ip--I)(N-- p--I) (14) 

2 

A reduction in the radius of the liner is accompanied by an increase in the inductive effect 
of the conductors and a corresponding reduction in the instability increments. 

The effect of inductance on the instability increment is greater, the larger the value 
of N and the smaller the value of p. Inductance has no effect on the increment for the 
smallest shortwave perturbations p = 0.5N (N even). 

Let us account for the resistance of the conductors. As before, we seek a solution in 
the form (ii), we use (6) to express current fluctuations 6I through 6X, and we obtain Eq. 
(9) with the factor 

Gp = Cp + iH~ + [T~(~+ T-I)] -I, g~ 1 =Qc=/21, T-* d. I (15) = am~. 

With allowance for Eq. (15), dispersion relation (12) has five roots. The value of Gp and 
the increment 7 > 0, corresponding the unstable mode, are found by successive iterations of 
system (13), (15). For the unstable mode, allowing for ohmic resistance leads to an increase 
in the factor Gp and approach of the increment to the limiting maximum value 7m (14). The 
following conclusion can be made: for a small number of conductors N = 4-9 and R/r ~ I0 (see 
Table I), the increments of the longwave perturbations differ from the limiting values by no 
more than 30% and are equal to the latter for the shortest-wave and most rapidly-growing 
disturbances. 

We will find the increase in the amplitude of a perturbation during compression of the 
liner. With the condition that the current change slowly, we use the equation of motion 

d2Rdt ---~=" Me2B2[f~N--it~176 d~ =--IT/2ZI2)~/2~___ (N--l)In~.R~ 

we find the integral increment as a function of the radius 

t 

= = I n ~  r ?(t')dt" (N_t)~/~ 
0 

(R 0 is the-initial radius of the liner). The relative deformation ~ = [6X[/R for rapidly 
growing short-wave perturbations is determined by the following relation as a function of the 
degree of compression of the linear (R0/R) 

~0 ( (N-- 1) 1/2 

and i s  s h o ~  f o r  d i f f e r e n t  N in  F i g .  1, where ~0 = {I t=0 .  

S t a b i l i t y  o f  Com pres s ion  o f  a T h i n - W a l l e d  C y l i n d r i c a l  L i n e r .  Le t  us e x t e n d  t he  r e s u l t s  
of the previous section to the case N = ~ with prescribed finite values of current density, 
j = NI/2~R and mass m = NM/2~R per unit length and with a liner thickness a = Nr2/2R. The 
results obtained here will be valid for perturbations with a wavelength ~ = 2nR/p >> a - the 
longwave limit. Under the condition N >> P, Eqs. (7) and (8) lead to the equalities ApN -I 
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= 0.5(p -- i), BpN -z -- 0.5, Cp?r -I ----- 0.5/p. In the limit N ~ ~, Eqs. (I0) and (15) lead to the 

following for perturbations 6X- exp(Tt + ip~) (~ is the polar angle) 

~2 q_ k g  - -  iG -1  G -~ - -  I q- p - 1  6X = 0; ( 1 7 )  

2a 
G = i + % ( ? + T _ ~ ) .  (18) 

H e r e ,  g = 2~172/rac 2 i s  a c c e l e r a t i o n ;  k = 2 ~ / ~  = p / R  i s  t h e  w a v e  n u m b e r ;  a ---- ak;  "r= - -  4 ~ a 2 / c  ~ 

is the time of diffusion of the field over the thickness of the linear. It should be noted 
that the geometry of the problem degenerates from cylindrical to planar at p = w. For the 

{~ + (~ G)T -~ 
increment of the unstable mode we have the equation ~2 ~2 

' -----k-~= G 

Let us analyze two extreme cases - strong and weak conduction. For an ideally conducting 

liner (= << 7ra, G = i), we arrive at a Rayleigh-Taylor instability with the increment ~la=~ = 

I q- --I. ---+ (]/rg_ i)i/~~ Here, the deformation of the liner takes place simul- 
p-->oo { taneously in the radial and tangential directions, with th e ratio of the amplitudes ~ = i-- 

i + + k--F-)  ]~-z% ~ In the  o p p o s i t e  l i m i t i n g  c a s e  o f  weak c o n d u c t i o n ,  when ~ >> ~ o ,  P 

the increment increases by a factor of 1.5 while maintaining the basic dependence on kg: ~[~=0 

= > i. However, the relative magnitude of the radial perturbation vanishes, and 
p~oo 

deformation occurs only in the tangential direction. Such instability leads to redistribution 
of the substance and the formation of pinches on the surface of the liner, making it possible 
to classify it as a discontinuous tie-ring instability [5]~ It is usual that in the present 
formulation of the problem, the tie-ring increment turns out to be independent of the resis- 
tance of the plasma. 

Plane Current Layer. Tie-Ring Instabilitj_~. Let us examine a plane current layer j = Jz 
located in the plane (y, z) and accelerated by an external field H = Hy. It is modeled by a 
discrete grid of massive rectilinear conductors. Taking (3) and (4) as a basis and addition- 
ally considering the vector-potential of the external field, in the limit N = ~ - here N is 
the number of conductors per unit length - we obtain the following linear equation for the 
perturbations 6X = (Sx, 6y)~exp (?t ~ ikg) 

0 - + 
(i9) 

Here, as for the cylindrical liner, G is determined by Eq. (18); g--2~2/Inc ~, if the external 
field is equal to the intrinsic magnetic field H m = 2n]/c; • = H/Hm. 

If H = H m and the total field on one side of the current layer vanishes, we arrive at 
the case of a cylindrical liner in the shortwave limit ~ << R (p >> I, Eq. (17)). Let us 
examine the stability of a massive current layer without an external field: ~ = 0. Here, the 
transverse (6Xj_k) and longitudinal (SX II k) deformations become independent. The trans- 
verse perturbations are stable and fluctuate with the frequency (kg)i/2. The longitudinal 
perturbations are unstable and, in accordance with (18), (19), the increment is determined 

from the equation ?2 kg i~?~a/2~ , where ~a = 4~a2/c2; a ~ ak. In conformity with the original 

model - which does not consider the motion of the plasma inside the layer along the transverse 
dimension - the condition ~ << 1 should be satisfied. Following [5], we introduce the dimen- 
sionless number S -- Ta/ta, ta =V2--~/g -- the time of propagation of an Alfven wave through the 
thickness of the layer. In the limit of low conductivity, when S << ~i/z the rate of growth 
of the perturbation is determined by the hydrodynamic time ? = (kg)V2 = ]/o-j-~/ta. This result 
agrees with the result obtained in [5]. In the opposite limiting case of high conductivity, 
when S >> ~i/2 

247 



Qg )1/3 
= ~-~ k2c 2 (~S) 2/~ 

= ~ , (20) 

where ~ = I/oa is the resistance of the current layer per unit length. If we insert the 
value ~ S'I/4 into (20) - this being the value at which the maximum increment is obtained, 
then we obtain the correct relation ~a?max ~ S I/~ [5]. There is also quantitative agreement 
with the results of numerical calculations in the longwave region ~<S-I/4 (Fig. 2, i - 
(20), 2 -calculation from [5]). 
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EVOLUTION OF AN INTENSE SPHERICAL SHOCK 

WAVE IN AN INHOMOGENEOUS ATMOSPHERE 

V. A. Pavlov UDC 534.222.2 

After the publication of [I] special interest arose in the propagation of intense spheri- 
cal [2-6] and planar [3, 7, 8] shock waves in an inhomogeneous atmosphere. The "geometric 
dynamics" of intense shock waves has been developed [9, I0], and a "characteristic rule" has 
been proposed for such waves [i0, ii]. The technique of [9-11] has been applied successfully 
to planar waves [i0]. 

Relying on the concepts of [9-11] the present study will examine evolution of an intense 
spherical shock wave in an inhomogeneous atmosphere. The accuracy of the approximate analyti- 
cal expressions obtained proves to be higher than the analogous results of [1-5]. 

The undisturbed state of atmospheric density and pressure are characterized by the 
expression 9o(z)/9o(0) = po(z)/po(O) ~ exp (--z/H) (where H is the height of the "homogeneous" atmos- 
phere). We will describe the medium by a system of gas dynamics equations 

09/Ot+div(pv)=Q~, dv/dt=--(l/9)vp+g=Q2, 
d p / d t - - a 2 d 9 / d t  - Q3, 

(1) 

where v, g, a are gas velocity, the acceleration of gravity, and the speed of sound; Q1(t, 

r) = Q0~(06(r); Q~(t, r)= Q0=(t)6(r)I1z; Q3(t, r)= Q03(06(r) is a function describing a point source. 
This source is located at the point R = 0 (where R, 8 are spherical coordinates, z = R cos 0) 
and excites an intense shock wave which departs to infinity. Sincethe properties of the 
medium depend only on the single coordinate z, the source is a point, and its impulse is 
oriented along the z axis, the solution of Eq. (I) will have axial symmetry. It is known [5, 
6] that in a wave moving upward the velocity of front displacement changes nonmonotonically, 
passing through a minimum at R = 1.5H/cos 8 [6] (the analytical calculations of [5] give a 
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